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In 2005 we reported evidence indicating that upcoming phonologi-
cal word forms, e.g., kite vs. airplane, were predicted during read-
ing. We recorded brainwaves (EEG) as people read word-by-word
and then correlated the predictability in context of indefinite articles
that preceded nouns (a kite vs. an airplane) with the average event-
related brain potentials (ERPs) they elicited (DeLong, Urbach, and
Kutas, 2005). Amid a broader controversy about the role of word
form prediction in comprehension, those findings were recently chal-
lenged by a failed putative direct replication attempt (Nieuwland, et
al., 2018: 9 labs, 1 experiment, 2.6e4 observations). To better under-
stand the empirical justification for positing an association between
prenominal article predictability and scalp potentials, we conducted
a wide-ranging exploratory data analysis (EDA), pooling our origi-
nal data with extant data from two followup studies (1 lab, 3 exper-
iments, 1.2e4 observations). We modeled the time course of article
predictability in the single-trial data by fitting linear mixed-effects re-
gression (LMER) models at each time point and scalp location span-
ning a 3 second interval before, during, and after the article. Model
comparisons based on Akiake Information Criteria (AIC) and slope
regression ERPs (rERPs, Smith and Kutas, 2015) provide substantial
empirical support for a small positive association between article
predictability and scalp potentials approximately 300–500 ms after
article onset, predominantly over bilateral posterior scalp. We think
this effect may reasonably be attributed to prediction of upcoming
word forms.
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Psycholinguistic theories of language comprehension gen-1

erally endorse the near immediate “incremental” con-2

struction of structured representations of meaning, as words,3

phrases, sentences, and discourses rapidly unfold over time (1).4

New information must be integrated with this evolving seman-5

tic representation and some accounts further posit predictive6

or preparatory mechanisms that facilitate processing and help7

the system keep up with the input (2–4). The hypothesis8

that the comprehension system actively predicts is difficult9

to test experimentally. The challenge is to find evidence of10

predictive processing that cannot plausibly be attributed to11

rapid integration. For instance, given a sentence context like,12

The day was breezy so the boys went outside to fly , knowl-13

edge of the world and English make some continuations more14

predictable (a kite) and others less so (an airplane). It is15

possible that the supporting context leads the processor to16

predict (anticipate, expect) the word kite before it arrives, in17

which case on-line measures sensitive to experimental manipu-18

lations of processing difficulty, e.g., self-paced reading times,19

eye movements, event-related brain potentials (ERPs) and20

magnetic fields (ERFs), might show an experimental effect21

in the expected direction, i.e., faster reading times, shorter22

gaze durations, or reduced N400 ERP/Fs for kite vs. airplane.23

However, if the effects observed at these nouns could with 24

equal justification be attributed to violated predictions or 25

integration difficulty (or both), these findings are compatible 26

with, but do not constitute strong evidence for prediction, 27

and parsimony favors integration mechanisms alone which are 28

necessary on any account. 29

The crux of the experimental challenge is time: strong tests 30

that information is pre-dicted come from measurements made 31

before it actually arrives. Seminal laboratory studies measuring 32

eye-movements while listening to meaningful sentences in a 33

controlled visual environment (5–7), found that people tended 34

to glance at mentioned objects quickly or even prior to hearing 35

a likely word, indicating rapid language-driven anticipation of 36

upcoming semantic or conceptual content. To date, the clearest 37

evidence for prediction of specifically linguistic information 38

comes from paradigms that recruit sequential dependencies 39

wherein one type of grammatical element such as a word 40

or morphological marking regularly co-occurs with another 41

element. The seminal ERP studies (8, 9), were conducted by 42

Wicha, Bates, Moreno, and Kutas using grammatical gender 43

agreement between indefinite articles and nouns in Spanish, 44

e.g., feminine una canasta (“a basket”) vs. masculine un costal 45

(“a sack”). If a Spanish sentence is likely to continue about a 46
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basket, the corresponding indefinite article is likely to be una47

not un, and vice versa if the likely continuation is about a sack.48

Since the two forms of the indefinite article have the same49

meaning (“some singular thing”), they should be equally easy50

or difficult to integrate. Wicha et al. recorded electrical brain51

potentials at the scalp (electroencephalogram, EEG) as people52

read sentences word-by-word on a computer screen, and found53

small differences between the average ERPs elicited by articles54

that were compatible vs. incompatible with the grammatical55

gender of the likely continuation. These effects varied with the56

particulars of the experimental design: incompatible articles57

elicited an N400-like relative negativity when the referent of58

the likely noun was depicted with a line drawing (8, 10) and59

a relative positive deflection around 500–700 ms when the60

continuations were orthographic words (9). With other lexical61

variables controlled by the experimental design, the difference62

between un and una is plausibly attributed to a mismatch63

between the grammatical gender of the article and the gender64

of the likeliest continuation, indicating that the continuation65

had been predicted before it was encountered.66

Subsequent studies have used related sequential dependency67

designs to probe other languages for evidence of prediction,68

e.g., via case-marking in Dutch (11), grammatical gender in69

Dutch (12–14, but see 15), Polish (16), and German (17). For70

these types of experimental designs, the nature of the linguistic71

dependency constrains the inferences that can be drawn about72

what information is anticipated (discussed in 3, 18). English73

does not mark grammatical gender or case agreement on nouns74

but does attest a phonological dependency between alternate75

forms of the indefinite article a which precedes consonant-76

sound-initial words and an which precedes vowel-sound-initial77

words: a kite vs. an airplane. We recruited this sequential de-78

pendency in previous work (19, hereafter, DUK05), recording79

scalp potentials while people read sentences like, The day was80

breezy so the boys went outside to fly [a kite/an airplane] in the81

park., one word at a time on a computer screen. We observed82

a positive correlation between the predictability, in context,83

of the indefinite articles that preceded the nouns a kite vs.84

an airplane and the average ERPs they elicited 200–500 ms85

over bilateral central and posterior scalp. Since the a/an86

alternation depends on the initial speech sound of the next87

word, we took the systematic association between the ERP88

amplitude and offline article cloze probability to suggest “that89

individuals can use linguistic input to pre-activate representa-90

tions of upcoming words in advance of their appearance” (19,91

p. 1119), and “Our observation of an ERP expectancy effect92

at the article leads us to conclude that predictions can be93

for specific phonological forms—words beginning with either94

vowels or consonants. In this sense, we propose that prediction95

can be highly specific, at least under some circumstances” (19,96

p. 1119-1120).97

Controversy has emerged recently regarding the strength98

of evidence for word form prediction in variations of the a/an99

design. For instance, we did not observe the effect in younger100

adults with sentences at a faster presentation rate (20, Experi-101

ment 2, 3.3 words per second) or in older adults at two words102

per second (21) and other groups have reported statistically103

reliable (22), marginal (23, Experiment 2), and null results (23,104

Experiment 1). A recent large-scale study by Nieuwland and105

colleagues proposed to resolve the question by re-using the106

experimental materials and design of the original DUK05 a/an107

study (healthy younger adults reading two words per second 108

in central vision) and analyzing EEG data collected from nine 109

laboratories around Great Britain (24, hereafter NIET18). 110

That report makes four main points: (1) it is important to 111

replicate experimental findings; (2) the prenominal article cor- 112

relation with grand average ERPs reported in DUK05 could be 113

a spurious statistical result; (3) with the same stimuli, gener- 114

ally similar procedures, more participants (N=338), and more 115

appropriate statistical analyses, they failed to observe a reli- 116

able effect at the prenominal article with either the potentially 117

problematic average ERP correlation analysis or planned and 118

post-hoc single-trial linear mixed-effect regression (LMER) 119

model analyses; (4) if there is such an effect, it is relatively 120

small. We concur. The value of replication is uncontroversial, 121

although rather than simply running the same experiment 122

over and over, there may be more to learn from replication 123

and extension as illustrated by the followup studies DeLong 124

conducted in the lab between 2005 and 2010 and that we have 125

analyzed anew for this report. We recognize the limitations 126

of inferences drawn from correlations between averages and 127

thus analyze single trial EEG data with LMER models for this 128

report. It is also clear that NIET18 failed to observe an effect 129

of prenominal article predictability with the pre-registered 130

LMER analysis of scalp potentials averaged across six scalp 131

locations and a 300 ms post-stimulus interval. However, when 132

the existence of such an effect is in question, there seems little 133

reason to suppose that the most informative general answer is 134

to be had by selecting one temporal interval and a small set of 135

scalp locations in advance and drawing inferences about what 136

is or is not going on throughout the brain as comprehension 137

processes evolve from the analysis of this aggregated snapshot. 138

In what follows, we propose alternatives that build on the 139

strengths of the NIET18 analysis and aim to overcome some 140

of its limitations. 141

The key empirical premise in the argument for word form 142

prediction based on the a/an experimental design is that 143

indefinite article predictability, operationalized as cloze prob- 144

ability, is positively associated with the amplitude of scalp 145

potentials elicited by the articles around 400 ms poststimulus 146

over central and posterior scalp, i.e., that article N400 ERP 147

amplitude correlates inversely with cloze probability. Accord- 148

ingly, we investigated this association in three EEG data sets 149

recorded in a/an-design experiments previously conducted 150

in our laboratory: the original DUK05 experiment and two 151

replication-extension experiments that revised and extended 152

the stimulus materials and experimental conditions. In all 153

three experiments, healthy young adults read sentences two 154

words per second in central vision as in the original DUK05 155

report and NIET18. In contrast with the absence of evidence 156

reported in NIET18, our exploratory LMER modeling of the 157

single-trial EEG data moment-by-moment at 26 scalp loca- 158

tions finds empirical support for the hypothesized association, 159

which, in turn, may reasonably be attributed to prediction of 160

upcoming word forms. 161

Exploratory EEG data analysis with regression ERPs. The data 162

from these three experiments have already been analyzed 163

in a number of other ways, published and unpublished (see 164

SI Appendix, Table S1), and the results are known. These 165

circumstances rightly prompt concern about circular analyses, 166

multiple comparisons, and p-hacking when choosing which 167

and how among the many available hypotheses to test with 168
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confirmatory null hypothesis tests (e.g., 25–28). Since accept-169

or-reject-at-α confirmatory null hypothesis testing is not appro-170

priate, we present a series of data-driven exploratory analyses171

along with what Tukey terms rough confirmatory assessments172

of strength of evidence, i.e., a flexible data investigation in173

the sense he contrasts with the rigid steps of data processing174

and confirmatory hypothesis tests (29–31). Consequently, in175

concept and execution, the analyses reported herein have more176

in common with the iterative phases of model development,177

diagnosis, evaluation, and selection found in applied statistical178

modeling than boiler-plate data processing that passes from179

EEG recordings to results through a predetermined sequence180

of steps and declares victory by rejecting (or failing to reject181

15, 23, 24), a null hypothesis at p < .05. Researchers intrigued182

or outraged by this approach will find an engaging manifesto in183

Tukey’s “Badmandments” (32, Prologue), a clear overview for184

psychologists in Behrens (33), and methodological guidance185

in standard texts, e.g., Cohen, et al. (34, Ch. 4, 10), Fox (35,186

Data Craft: Ch. 2-4), and Kutner et al. (36, Ch. 9-10, Fig187

9.1).188

Our exploratory analyses used the same class of LMER189

models as NIET18 and differ primarily in that we evaluated a190

greater variety of models and modeled the data at a higher191

spatial and temporal resolution in the regression ERP (rERP)192

framework recently described and motivated by Smith and193

Kutas (37, and references therein for related approaches). For194

these analyses we sweep an LMER model across the single195

trial EEG and fit the data for all subjects and items at each196

time point of the digital recording. As Smith and Kutas point197

out, modeling the EEG data in this manner is a generalization198

of conventional sum-and-divide time-domain averaging. For a199

set of n single-trial EEG epochs (segments of the recording),200

each time-aligned to an experimental event of interest, the201

time-domain average ERP (t) = 1
n

∑n

i=1 EEGi(t) at time, t, is202

mathematically identical to the estimated intercept, β̂0, of an203

intercept-only linear model of the same data, EEG(t) = β0 +ε,204

fit by ordinary least-squares regression. This means plotting,205

measuring, analyzing, and interpreting time-domain average206

ERP waveforms and the time series of estimated linear model207

intercepts, β̂0(t), are literally one and the same. This ap-208

proach generalizes to more complex models, notably multiple209

regression models that may include continuous and categorical210

predictor variables, and other classes of models including lin-211

ear mixed-effects models. For models with multiple predictor212

variables, e.g, EEG(t) = β0 +β1X1 +. . .+βJXJ +ε, fitting the213

model yields a time series of estimated coefficients, β̂j(t), for214

each regressor, Xj , the waveforms Smith and Kutas dubbed215

regression ERPs (rERPs). Furthermore, besides the estimated216

model parameters, fitting a model at each time point also217

yields the corresponding time series of residual errors and218

derived quantities such as error variance, coefficient standard219

errors and confidence intervals, and goodness-of-fit measures.220

Modeling time series data is nothing new; the key insight of221

the regression ERP framework is that the logic of conventional222

event-related time-domain averaging extends to event-related223

time-domain modeling more generally, and thereby to the224

investigation of event-related brain activity by methods and225

procedures from applied statistical data modeling developed226

to fit, diagnose, compare, and interpret different models. The227

end game is to determine which model(s), among the many228

possible, are likely to better or best account for systematic229

relationships between predictor and response variables, i.e., 230

between experimental variables and event-related brain activ- 231

ity. Determining the existence and form of these associations 232

is the first (though not last) step in causal inference. 233

Approach 234

To investigate the association, if any, between the predictability 235

of articles and the brain responses they elicit during word-by- 236

word reading, we swept LMER models across single trial EEG 237

recordings before, during, and after the onset of articles that 238

vary in cloze probability. We make inferences based on the 239

time course and scalp distribution of model goodness-of-fit 240

measures and regression ERPs. Details and further discussion 241

appear in the Methods and Supplementary Information (SI). 242

The analysis reproduction recipe, open-source scripts, and 243

additional figures are available online at OSF: UDCK (38). 244

EEG data: 3 experiments. After the original study reported 245

in DUK05, DeLong and colleagues continued to investigate 246

aspects of predictive processing in younger and older adults. 247

For this report we selected two studies conducted between 2005 248

and 2010 that incorporated the a/an prenominal indefinite 249

article manipulation and extended the original study design 250

with additional conditions and materials (see SI Appendix, 251

Table S1 for a summary and references). The rationale for 252

selecting these particular studies is that they tested healthy 253

young adults reading two words per second in central vision 254

which affords a close comparison between and across the origi- 255

nal DUK05 and NIET18 studies. Furthermore, the additional 256

materials developed by revising and extending the DUK05 257

materials fill in gaps in the distribution of contextually sup- 258

ported noun and the corresponding pre-nominal article cloze 259

values in the DUK05 materials. This makes the pooled data 260

sets appropriate for modeling article cloze probability as a 261

continuous predictor. So for this report, we pooled the data 262

from these three studies and modeled approximately twelve 263

thousand single trial epochs (Table 1), recorded at 26 scalp 264

locations spanning the interval from about 1.5 seconds before 265

to 1.5 seconds after the critical article (see Methods and SI 266

Appendix, EEG Experimental Procedures).

Table 1. EEG Experiment participants, items, and article cloze

observed article cloze
E P I N M SD range
1 32 80 2136 (0.16) 0.38 0.35 0.0 - .97
2 32 160 4668 (0.07) 0.44 0.41 0.0 - 1.0
3 24 240 5232 (0.08) 0.39 0.38 0.0 - 1.0
all 88 320† 12043 (0.10) 0.408 0.389 0.0 - 1.0

E = EEG Experiment. P = Number of participants, I = Num-
ber of items in the experimental design for modeling item as a
random variable. Each item corresponds to the context prior to
the critical article and provides one cloze value for a and one
for an (see Supporting Information for article cloze distributions
and data exclusions). N = number of single trials analyzed after
excluding EEG artifacts (proportions in parentheses) and stimulus
irregularities (0.01). The observed article cloze mean (M) and
standard deviation (SD) on each row are computed for the single
trial data on that row and may be used to transform estimated
regression coefficients for standardized article cloze back to the
original cloze scale of 0–1. †Experiment 3 used 160 of the same
pre-article item contexts as Experiment 2 and added 80 new ones
80 + 160 + 80 = 320 distinct items. Modeling item random ef-
fects takes this into account (see SI Appendix, Stimulus and item
coding).
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Modeling: linear mixed-effects regression ERPs. To charac-268

terize the time-course and scalp distribution of article cloze269

effects in the regression ERP framework, we swept each of the270

LMER models in Table 2 across the single trial EEG data271

and computed the lme4::lmer() profiled maximum likelihood272

(ML) fit for the 1.2e4 observations at each time point and each273

channel (39). For exposition, Table 2 presents the models in274

the formula language of lme4 which specifies LMER models in275

two parts: the “fixed effect” predictor terms and the “random276

effect” terms enclosed in parentheses. This syntax aligns with277

a matrix equation specification of the model, y = Xβ+Zb+ε,278

that shows the observed response variable y modeled in two279

parts as the sum of β-weighted regressors for fixed effects (Xβ)280

and b-weighted regressors for random effects (Zb). For an281

introduction to LMER modeling in psychology experiments282

see the development of Equation (9) in 40 and see 39 for a283

formal treatment of the model and fitting algorithms.284

To highlight the approach in this report, we can unpack
Xβ as the column vectors, X = [1,xcloze], a column of 1’s and
the per-item article cloze values, and the scalar coefficients,
β = [β0, βcloze] for the intercept and article cloze:

EEG = β01 + βclozexcloze +Zb+ ε [1]

The analyses that follow map neatly onto the terms of Equa-285

tion 1. First, to select random effects for subjects, items and286

experiments, we compared models with different Zb (Figure 1).287

Second, to evaluate evidence for an association between arti-288

cle cloze and scalp potentials we compared (full) models like289

Equation 1 that include the article cloze regressor, xcloze, with290

corresponding (reduced) models that do not (Figure 2). Third,291

the linear mixed-effect regression ERP (lmerERP) waveforms292

are the estimated coefficients for the intercept, β̂0, and article293

cloze β̂cloze over time for each EEG channel (Figure 3).294

Model evaluation: Akiake Information Criterion and ∆i. To295

have the same metric for comparing larger sets of models296

en masse and model pairs (41), we evaluated models on es-297

timated Akiake Information Criterion (AIC). In outline, the298

general form of the AIC = −2 log(L) + 2K rewards goodness-299

of-fit through the maximized likelihood, L, of the model given300

the data, while penalizing model complexity in proportion to301

the number of model parameters, K. Better fitting models of302

the same data have larger likelihoods, hence smaller −2 log(L)303

(deviance). Simpler models have fewer parameters, i.e., smaller304

K. So, among a set of models of the same data, the better fit-305

ting, simpler model(s), Mi, have lower AIC values than worse306

fitting and/or more complex models. We evaluated the degree307

of empirical support for models in a set according to Burnham308

and Anderson’s heuristics for ∆i = AICi −AICmin, the differ-309

ence between the AIC for model, Mi, and the minimum AIC310

among models being compared: “models having ∆i ≤ 2 have311

substantial support (evidence), those in which 4 ≤ ∆i ≤ 7312

have considerably less support, and models having ∆i > 10313

have essentially no support” (42, p. 270-271). Critically, these314

heuristics treat AIC differences less than 2 as meaningless315

for model selection, i.e., they characterize evidential ties, and316

begin to look for AIC differences around 4 or greater to dif-317

ferentiate alternative models. Taken together, the AIC and318

heuristics comprise a practical general framework for inves-319

tigating—comparing and selecting among—sets and pairs of320

models with fixed and random effects (see SI Appendix, AIC321

model selection).322

Table 2. Linear mixed-effects models as lme4 formulae

Random effects

maximal
M0 cloze + (cloze | expt) + (cloze | subject) + (cloze | item)

drop 1 slope
M1 cloze + (cloze | expt) + (cloze | subject) + (1 | item)
M2 cloze + (cloze | expt) + (1 | subject) + (cloze | item)
M3 cloze + (1 | expt) + (cloze | subject) + (cloze | item)

drop 2 slopes
M4 cloze + (cloze | expt) + (1 | subject) + (1 | item)
M5 cloze + (1 | expt) + (cloze | subject) + (1 | item)
M6 cloze + (1 | expt) + (1 | subject) + (cloze | item)

drop 3 slopes
M7 cloze + (1 | expt) + (1 | subject) + (1 | item)

drop 1 random term
M8 cloze + (1 | subject) + (1 | item)
M9 cloze + (1 | expt) + (1 | subject)
M10 cloze + (1 | expt) + (1 | item)

Article cloze fixed-effect comparisons

Keep It Maximal (KIM)
M5 cloze + (1 | expt) + (cloze | subject) + (1 | item)
M5r (1 | expt) + (cloze | subject) + (1 | item)

Keep It Parsimonius (KIP)
M7 cloze + (1 | expt) + (1 | subject) + (1 | item)
M7r (1 | expt) + (1 | subject) + (1 | item)

Experiment as a fixed effect

Keep It Maximal (KIM)
M11 cloze + expt + (cloze | subject) + (1 | item)
M11r expt + (cloze | subject) + (1 | item)

Keep It Parsimonius (KIP)
M12 cloze + expt + (1 | subject) + (1 | item)
M12r expt + (1 | subject) + (1 | item)

Experiments 1, 2, and 3 modeled separately

Keep It Maximal (KIM)
M13 cloze + (cloze | subject) + (1 | item)
M13r (cloze | subject) + (1 | item)

Keep It Parsimonious (KIP)
M14 cloze + (1 | subject) + (1 | item)
M14r (cloze | subject) + (1 | item)

Note: Fixed and random intercepts are implicit and modeled by default.

Random effects selection. There is some debate in the recent 323

mixed-effects modeling literature about whether maximal or 324

parsimonious random effects are appropriate for hypothesis 325

testing with LMER models (43, 44). The debate turns in 326

part on how the decision to include, e.g., random slopes in 327

addition to random intercepts, impacts the rate of incorrect 328

null hypothesis rejections (Type I errors) vs. loss of power and 329

failure to reject the null hypothesis (Type II errors). We took 330

the present project as an opportunity to evaluate the conse- 331

quences of the decision as a case study of exploratory data 332

analysis. Specifically, among the 11 candidate models with ran- 333

dom effects ranging from maximal to minimal, M0, . . . ,M10 334

(Table 2), we selected two for further investigation according 335

to different decision rules. “Keep It Maximal” (KIM): select 336

the maximal random effects for which the model converges 337

reliably. “Keep It Parsimonious” (KIP): select the simplest 338

random effects for which the model converges reliably and 339

does not have substantially less support than the alternatives 340

(∆Mi ≥ 4). 341
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M0

cloze + (cloze | expt) + (cloze | subject) + (cloze | item)

M1

cloze + (cloze | expt) + (cloze | subject) + (1 | item)

M2

cloze + (cloze | expt) + (1 | subject) + (cloze | item)

M3

cloze + (1 | expt) + (cloze | subject) + (cloze | item)

M4

cloze + (cloze | expt) + (1 | subject) + (1 | item)

M5

cloze + (1 | expt) + (cloze | subject) + (1 | item)

M6

cloze + (1 | expt) + (1 | subject) + (cloze | item)

LMOc
LLOc
LLTe
LDPa
LDCe
LMCe
LMFr
LLFr
LDFr
LMPf
LLPf
MiOc
MiPa
MiCe
MiPf
RMOc
RLOc
RLTe
RDPa
RDCe
RMCe
RMFr
RLFr
RDFr
RMPf
RLPf

M7
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Random effects model selection: ∆Mi = AICMi − AICmin

Fig. 1. The time course and scalp distribution of AIC ∆Mi comparisons among models in the set {M0, . . . ,M10} (Table 2). Each panel, ∆Mi, indicates how the AIC for
model Mi compares with the best supported model (minimum AIC) among the eleven candidates at each time point and channel: ∆Mi = AICMi − AICmin. Since there is
always some minimum AIC, somewhere among the models ∆Mi = 0. As the panels show, this varies by time point and channel. The x-axis is time in milliseconds, vertical
lines indicate stimulus word onsets, critical article onset is at 0. The rainbow line plots show the time course of ∆Mi (y-axis) for each channel in colors given by the channel
legend; horizontal lines indicate the Burnham and Anderson ∆i heuristic intervals bounded by 2, 4, 7, and 10. A few values for M9 and most for M10 are above 50 and not
shown. The adjacent blue and red raster plots show the same data: darker colors correspond to larger ∆Mi values; shading levels correspond to the heuristic intervals. EEG
channels are arrayed on the y-axis in the order given by the channel color legend: the top 11 rows are left hemiscalp, the next four are midline, the bottom 11 rows are right
hemiscalp. At a glance, the lightest patches among the raster plots indicate the best- (or equally well-) supported model(s) in the set (0 ≤ ∆Mi ≤ 2) and darker patches
indicate that the model is less well supported than an alternative (∆Mi > 2). Times and channels where lme4::lmer() fitting generated a warning are indictated with red.
Models M5 and M7 were selected for further investigation based on the Keep it Maximal and Keep it Parsimonious selection rules, respectively. These results are for models fit
to approximately 1.2e4 single trial observations at 8 ms intervals and 26 EEG channels (Table 1).

Evidence for an article cloze effect: ∆M and lmerERPs. The342

critical empirical question is whether there is an association343

between article cloze and scalp potentials generated by brain344

activity in response to encountering those articles. We ap-345

proached this in two ways based on fitting the models selected346

by the KIM and KIP decision rules: 1) we computed ∆M and347

∆Mr for the full and corresponding reduced model pairs taking348

∆Mr > 4 as indicative of substantially less support for the349

reduced model; 2) we examined the magnitude and confidence350

intervals of the article cloze (slope) regression ERPs for the351

full model.352

The possible outcomes and interpretations of this regression353

ERP modeling are straightforward. If the article cloze and354

scalp potentials are unrelated, including article cloze in the355

model should have little impact on the goodness-of-fit and ∆M356

for the full vs. reduced model should be around 2 because of357

the AIC penalty for the additional parameter. And in this358

same case, the article cloze (slope) rERP waveforms should359

tend to be around 0 plus or minus random variation, i.e., the360

X-Y trend line for article cloze (X) vs. EEG (Y) at each361

point in time should tend to be flat. Alternatively, if there362

is an approximately linear association between article cloze363

probability and scalp potentials, the deviance term of the AIC364

for the full model should be smaller. In this case, the extent to365

which ∆Mr for the reduced model is greater than 2 indicates366

the degree to which the full model is better supported by the367

data after adjusting for its increased complexity, with ∆Mr > 4368

indicating a substantial difference in support. Furthermore,369

the time course and scalp distribution of the ∆Mr values and370

lmerERPs are important. To support the inference that the 371

potentials are generated by a brain response to the article, an 372

AIC ∆Mr effect should be evident in the interval after article 373

onset and not before. Likewise, the article cloze (slope) rERP 374

waveforms should tend to hover around 0 prior to article onset 375

and then deviate from zero afterwards, with the polarity of 376

the deviation, positive or negative, indicating the direction of 377

the association (correlation). 378

Taken together, the full vs. reduced model pair ∆i values 379

and the magnitude of the lmerERPs relative to their confi- 380

dence intervals are the basis of our evaluation of the strength 381

of evidence for an article cloze effect, the rough confirmatory 382

analysis in Tukey’s sense. In Tukey’s view (31, p. 24), strong 383

confirmatory null hypothesis testing requires designing, exe- 384

cuting, and analyzing an experiment to ask and answer one 385

question, thereby reducing the entire project to a single bit 386

of information—1 or 0, significant or not (32, p. 277). By 387

contrast, our exploratory modeling aims to gauge where and 388

when and to what extent—if any—there is evidence to sup- 389

port a linear approximating model of the relationship between 390

article cloze and scalp potentials. 391

Results 392

The following summarizes the main findings in the critical 393

interval from 1.5 s before article onset up to the onset of the 394

following word. Note that Figures 1, 2, and 3 display the 3 s 395

of data modeled which spans the two words after the article. 396
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Random-effects selection. The LMER models M0, M1, . . . ,397

M10 (Table 2) hold constant the intercept and fixed-effect of398

article and vary the random effects. Figure 1 shows there is399

no unique best supported model with minimum AIC at all400

time points and EEG channels, i.e., no single model where401

∆Mi = AICMi − AICmin = 0. However, some models were402

much less supported than others in the 1.5 s pre- to 0.5 s403

post-article interval and we selected two for further investi-404

gation. First, in accord with both decision rules, we ruled405

out models with substantial numbers of fitting warnings (M0,406

M1, M2, M3, M4, and M6), each of which included item407

or experiment random slopes for article cloze. Of those re-408

maining, in accord with the Keep It Maximal decision rule,409

we selected M5 with random intercepts for experiment, sub-410

ject, and item and a random slope for subjects as the model411

with the maximal random effects that reliably converged,412

KIM M5: cloze+(1|expt)+(cloze|subject)+(1|item). We413

examined the remaining models with simpler random effects414

and, unsurprisingly, found intervals of substantially less sup-415

port (∆Mi > 4) for models that dropped any one of the ex-416

periment, subject, or item random variables entirely (M8, M9,417

M10). Consequently, in accord with the Keep It Parsimonious418

rule we selected model M7 with random intercepts for experi-419

ment, subject, and item as the model with the most parsimo-420

nious random effects that was well-supported by the design and421

the data, KIP M7: cloze+(1|expt)+(1|subject)+(1|item).422

Neither the KIM (M5) nor KIP (M7) models were entirely423

free of fitting warnings, but these were scattered irregularly424

across the times and channels and few in number, especially425

during the interval of interest. Although Keep It Maximal and426

Keep it Parsimonious decision rules may represent different427

extremes, in this particular instance, the models selected, M5428

and M7, differed only in whether or not to include an article429

random slope for subjects.430

Evidence for an article cloze effect. With the KIM (M5) and431

KIP (M7) models selected for further investigation, we turned432

to the research question of primary interest: is there evidence433

of an association between article predictability and scalp poten-434

tials? We addressed this by pairwise AIC model comparisons435

between the full and reduced KIM (M5, M5r) and KIP (M7,436

M7r) models (Figure 2) in conjunction with the values of437

the estimated coefficients for the article cloze predictor in438

the full models, β̂cloze, i.e., the article cloze regression ERPs439

(Figure 3B).440

We note first that ∆M5 and ∆M7 for the full KIM and441

KIP models, respectively, accord with the definitions of AIC442

and ∆M. These values range between 0 and 2 at all times443

and channels (Figure 2, top row), except for a few anomalous444

values where the fitting failed to converge for the maximal445

model M5. These expected results support the face validity of446

the AIC estimates and ∆M calculations which appear to be447

generally well-behaved for these models and data.448

The key evidence for an article cloze effect is observed at449

those scalp locations and times where the reduced models450

∆M5r and ∆M7r values are > 4, indicating a substantial de-451

crease in goodness-of-fit when the article cloze predictor is452

omitted from the model. For these reduced models (Figure 2,453

middle and bottom rows), there are two intervals of immediate454

interest: the prestimulus interval (-1.5–0 s), and the critical455

article (0–0.5 s). The interval spanning the words immediately456

following the article (0.5–1.5 s), is relevant as well, albeit less457

directly, as we touch on in the Discussion. 458

Prestimulus ∆M. During the 1.5 s preceding the onset of the crit- 459

ical article, values for the reduced KIM model range between 460

0 and 2 (Figure 2A, ∆M5r) with occasional irregular values 461

above 2 (indicated by the darker blue speckles) and, again, 462

a few anomalously large AIC values coincident with model 463

fitting warnings. The findings for the reduced KIP model 464

with the parsimonious random effects are similar (Figure 2B, 465

∆M7r) except that there are fewer fitting warnings and no 466

anomalous ∆M7r excursions. Since ∆M ≤ 2 for the most part 467

during the prestimulus interval, and rarely > 4, we conclude 468

that support for the full and reduced models does not differ 469

substantially in this interval for either the KIM or KIP ran- 470

dom effects. This evidential tie in the prestimulus interval is 471

instructive for what it does not show. Given the design of 472

the experiment, and the epoch centered on the entire 1.5 s 473

prestimulus baseline, an effect of article predictability should 474

be evident upon encountering the article but not before. If the 475

modeling showed an article cloze effect prior to article onset, 476

it could indicate something amiss in the design or execution 477

of the experiments, the model specification or fitting, or the 478

model comparison metric. In so far as we can determine with 479

the present approach, examination of the 1.5 s of prestimulus 480

activity for the 26 scalp locations at 8 ms intervals reveals 481

no clear indication of these potential defects. Consequently, 482

we suppose that article cloze effects observed in the interval 483

following article onset may reasonably be attributed to a brain 484

response to the article. 485

Critical article ∆M . Following the onset of the critical a/an indef- 486

inite articles, the AIC differences between the full and reduced 487

models do not appear to be dramatically different from those 488

in the prestimulus interval until about 300 ms poststimulus. 489

Then, between around 300 ms and the onset of the next word, 490

AIC values for the reduced models, M5r and M7r, are system- 491

atically larger, predominantly over bilateral posterior scalp, 492

peaking around 400 ms (Figure 2A and 2B, bottom row, ma- 493

genta highlight). This increase was not observed over anterior 494

scalp. The results for the KIM and KIP models are similar: 495

the KIP model ∆M7r values are slightly larger in some cases, 496

there are fewer fitting warnings, and no anomalously large 497

AIC values. For both the KIM and KIP comparisons, there 498

appears to be an oscillation around 10 Hz in the reduced mod- 499

els (∆M5r, ∆M7r) during the interval 300–500 ms poststimulus, 500

and perhaps earlier, over posterior scalp. These oscillations 501

may indicate residual alpha band noise EEG though the possi- 502

bility of an event-related 10 Hz amplitude modulation should 503

not be overlooked. These oscillations make evaluation of the 504

time course of AIC differences on a scale below about a tenth 505

of a second precarious, but the slower phasic response is evi- 506

dent with or without the oscillations. We interpret this phasic 507

increase in ∆M5r and ∆M7r above 4 for the KIM and KIP 508

pairwise model comparisons as empirical support—rough con- 509

firmation—of a systematic association between article cloze 510

and scalp potentials 300–500 ms over posterior scalp. This 511

effect is the crux of the argument for word form prediction. 512

Article cloze lmerERPs. Whereas the full vs. reduced model AIC 513

comparisons indicate when (around 300–500 ms poststimulus) 514

and where (bilateral posterior scalp) there is evidence of an 515

article cloze effect, the magnitude and polarity of the esti- 516

mated rERP slope coefficients characterize the magnitude and 517
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Evidence for an effect of article cloze: AIC ∆M pairwise model comparisons
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Fig. 2. AIC ∆M pairwise full vs. reduced LMER model comparisons. A) Keep it Maximal (KIM): full (M5) vs. reduced (M5r). B) Keep it Parsimonious (KIP): full (M7) vs. reduced
(M7r). Axes, scales, and data are as in Figure 1. The top two rows shows AIC ∆M and ∆Mr for the full and reduced models respectively across the 3 s epoch, article onset at 0.
The bottom row inset zooms in to show AIC ∆Mr for the reduced model at the critical prenominal article in more detail. For both comparisons, during the 1.5 s interval preceding
the critical article, the full and reduced models are equally supported, ∆M and ∆Mr < 2, with a few idiosyncratic exceptions. During the interval around 300 - 500 ms following
the article onset (highlighted in magenta), the reduced models are substantially and systematically less supported at bilaterial posterior scalp locations, ∆M5r and ∆M7r > 4, as
indicatd in panels A and B by traces above 4 in the rainbow line plots and darker blue bands in raster plots.

direction of the association under the assumption of a linear518

relationship. We found that the magnitude and confidence519

intervals for the KIM and KIP intercept (β̂0) and article cloze520

(β̂cloze) lmerERPs are essentially indistinguishable over the521

entire 3 s epoch (see SI Appendix, fig. S4) and we present522

results here for the KIM model only (Figure 3).523

The model intercept lmerERPs (β̂0) are the rERP analog524

of grand mean average ERPs. These show the morphology525

characteristic of visual evoked potentials, a series of six tran-526

sient responses to the six words presented two per second over527

the three second epoch (Figure 3A). For the critical article528

cloze lmerERPs (β̂cloze) we found that prior to the onset of529

the article, they hover around 0 and the 95% confidence in-530

tervals for the point estimates generally span 0 (Figure 3B).531

Then, following the onset of the critical article, we observed532

a biphasic positive response. The first phase begins around533

300 ms after the article, is larger predominantly over posterior534

scalp, increases to a peak around 400 ms and then decreases535

until shortly after the onset of the following word. The polar-536

ity of this deflection indicates a positive association, i.e., as537

cloze probability of an article increases, scalp potentials over538

posterior scalp become more positive. This interval, about539

300–500 ms post-article, is the first time in the epoch where540

the lower bound of the 95% confidence interval for the article541

cloze rERP is above 0 for sustained periods. A second, larger542

phasic positive deflection was observed, peaking around 400 ms543

after the word following the article, with a time course and544

scalp distribution corresponding to the larger second phase545

of increased AIC ∆Mr for the reduced KIM and KIP models546

that emerges after the onset of the word following the article547

(Figure 2, panels A and B, second rows). 548

In sum, we observed what appears to be a systematic 549

event-related lmerERP response to the article with a polarity, 550

latency, and scalp distribution that coincide with previously 551

reported reductions in N400 ERP amplitude with increasing 552

cloze probability. We interpret this as direct evidence that 553

the brain response to the article systematically covaries with 554

the predictability of the indefinite articles a and an. To the 555

extent the predictability of the article is dependent on the 556

predictability of the not-yet-presented noun and its initial 557

speech sound, the positive-going phasic article cloze lmerERP 558

response is reasonably interpreted as indirect evidence for word 559

form prediction. 560

Interim Summary 561

When we modeled about twelve thousand EEG single trials 562

moment by moment at 26 scalp locations with appropriate 563

linear mixed effects models, we found that models that include 564

article cloze probability as a predictor variable do a substan- 565

tially better job accounting for the variability in potentials 566

recorded over posterior scalp around 300–500 ms after the 567

onset of the article. The face validity of the modeling gener- 568

ally, and pairwise AIC model comparison results in particular, 569

are bolstered by the facts that 1) ∆M ≤ 2 for the full models 570

are in line with theory, 2) the full and reduced models are 571

equally supported during the prestimulus interval when no 572

difference is expected, and 3) the direction of the observed 573

positive association between article cloze probability and scalp 574

potentials characterized by the slope regression ERPs agrees 575

with the previously reported reductions in average N400 ERP 576
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LMER model M5 fixed-effect regression ERPs
EEG ∼ cloze + (1 | expt) + (cloze | subject) + (1 | item)
EEG = β01+ βclozexcloze +Zb+ ε

Fig. 3. Model M5 linear mixed-effects regression ERPs (3 seconds, 26 channels).
Solid lines plot the estimated regression parameter over time (ms) relative to critical
article onset at 0, bands indicate 95% confidence intervals, positive values are plotted
up. Anterior to posterior scalp locations are arrayed top to bottom in each panel.
A) Intercept lmerERPs (β̂0) are analogs of grand mean average ERPs and show
the characteristic morphology of visual evoked potential responses, sharply defined
transient peaks and troughs, especially prominent over lateral occipital scalp. B)
Article cloze lmerERPs (β̂cloze), characterize the slope of the straight line relationship
between standardized article cloze and scalp potentials as it evolves over time. The
y-axis is µV per unit standardized cloze. The cloze lmerERPs show a transient
positive response, predominantly over bilateral posterior scalp, around 300–500 ms
after article onset (magenta highlight) and not before, indicating a positive association
between cloze probability and scalp potentials in response to the critical prenominal
articles.

amplitude with increasing cloze probability (19, 45). As best 577

we could determine, for these data, the perhaps contentious 578

choice to fit models with maximal or parsimonious random 579

effects made little difference for characterizing the time course, 580

scalp distribution, or strength of empirical support for the 581

article cloze effect based on model comparisons or for estimat- 582

ing the fixed-effect of article cloze, i.e., the magnitude and 583

precision of the lmerERP estimates. 584

Followup Analyses 585

Since exploratory data investigation arrives at conclusions 586

through an iterative process of evaluating assumptions and 587

alternatives, we conducted a number of followup analyses, sum- 588

marized briefly here (see SI for further details and discussion). 589

Influential data diagnosis. A general issue for the interpretation 590

of estimated regression model coefficients is whether subsets 591

of extreme or outlying observations exert a disproportionate 592

influence on estimates and exaggerate (or obscure) patterns 593

seen in the bulk of the data. For modeling the time course 594

of the article cloze effect, this question is whether the mor- 595

phology of the lmerERP waveforms in particular, is driven by 596

a subset of unrepresentative data. Mixed-effects modeling is 597

computationally intensive and influence diagnostics based on 598

model refitting are intractable for data on the scale of this 599

analysis at present so we fell back to ordinary least squares 600

(see SI Appendix, Influential data diagnosis). We identified 601

and excluded a subset of about 5% of the single trial epochs 602

that contained the highest proportion of potentially influential 603

observations. We then re-fit the KIP and KIM models to 604

this trimmed data set and computed how much the ampli- 605

tude of the intercept and article cloze lmerERPs changed as a 606

consequence of the trimming, i.e. we computed a version of 607

the DFBETAS data diagnostic, adapted for regression ERPs. 608

We assumed that article cloze DFBETAS ±2 would indicate 609

an unusually large change in the rERP estimate based on a 610

large n Student’s t distribution (35). We found there were 611

few DFBETAS excursions of that magnitude and those that 612

occur do so at the peaks and troughs of approximately 10Hz 613

oscillations (see SI Appendix, fig. S6). This oscillation sug- 614

gests that the epochs identified and excluded contained high 615

amplitude alpha band activity. Crucially, the time course 616

and distribution of ∆Mr values for the reduced KIM (M5r) 617

and KIP (M7r) models of the trimmed data still show the 618

phasic increase over posterior scalp around 300–500 ms and 619

the article cloze lmerERPs (β̂cloze), show the corresponding 620

positive deflection (see SI Appendix, fig. S7). So it appears 621

the article cloze effect observed in the initial analysis are not 622

driven entirely by this subset of potentially influential trials. 623

Modeling experiment as a fixed effect. The designs and procedures 624

of EEG Experiments 1, 2, and 3 are sufficiently similar to 625

justify pooling the data for purposes of modeling the brain 626

reponse to the critical indefinite articles, provided systematic 627

variation between the experiments is also accounted for. Since 628

for our purposes, systematic differences between the experi- 629

ments is nuisance variation and the different numbers of trials 630

in the three experiments make the design substantially unbal- 631

anced, we modeled experiment as a random variable. However, 632

views may differ on the appropriate treatment of categorical 633

variables as fixed vs. random and the consequences for draw- 634

ing model-based inferences, particularly when the number of 635
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levels is small (for discussion see 46, p. 20ff and 47, p. 246636

and p. 275ff). So we investigated the question by modeling637

the single trial EEG with article cloze and experiment as638

fixed-effects, retaining the KIM and KIP random effects for639

subjects and items, see Table 2 KIM (M11, M11r) and KIP640

(M12, M12r). We found that fitting full and reduced models641

with experiment as a fixed effect converged reliably and the642

pattern of AIC ∆M and ∆Mr for the pairwise full vs. reduced643

model comparisons and article cloze regression ERPs and their644

confidence intervals are essentially the same as for models with645

a random intercept for experiment (see SI Appendix, fig. S8).646

So in this instance, the choice of fixed- vs. random-effect for647

the experiment variable was immaterial for inferences about648

the article cloze effects.649

Modeling Experiments 1, 2, and 3 separately. To assess whether650

the article cloze effect observed for the data pooled across651

the three experiments was representative of each experiment652

individually, we split the data by experiment and fit the full653

and reduced model pairs in Table 2: KIM (M13, M13r), and654

KIP (M14, M14r). For each experiment, we examined AIC ∆M655

and ∆Mr measures and the article lmerERPs (see Experiment656

1, SI Appendix, fig. S9; Experiment 2, SI Appendix, fig. S10;657

Experiment 3, SI Appendix, fig. S11). The results were mixed658

for the AIC model comparisons and somewhat more consistent659

for the article cloze lmerERPs. For the Experiment 1 data,660

fitting the full and reduced models with KIM random effects661

had considerable difficulty converging. Fitting the full and662

reduced KIP models converged reliably with irregular intervals663

of ∆M14r > 4 throughout the 3 s epoch and no clear break664

in the pattern between the pre- and post-article interval that665

suggests an event-related brain response to the article. So the666

AIC model comparisons did not provide clear evidence for a667

relationship between article cloze and an event-related EEG668

response in Experiment 1. For the Experiment 2 data, the KIM669

and KIP models converged reliably with only a modest increase670

in convergence failures for the KIM models. Overall, the time671

course and scalp distributions were generally similar to those672

for models of the data pooled across all three experiments,673

with scattered idiosyncratic ∆M13r > 4 in the prestimulus674

interval and a systematic onset and offset around 300 ms675

and 500 ms post-article, respectively. For the Experiment 3676

data, there are slightly more convergence failures for the KIM677

models and prestimulus AIC differences for the reduced model678

are evident, more so for the KIP comparison, though not to679

the extent observed for Experiment 1. In the critical interval680

around 300–500 ms post-article, AIC differences larger than681

in Experiment 1 and smaller than Experiment 2 rise and fall.682

In all three experiments, the article cloze lmerERPs tended to683

vary around 0 prior to the critical article onset, after which684

they showed a small positive deflection followed by a larger one685

over bilateral posterior scalp. The onset of this rERP response686

in Experiment 1 appears to be perhaps 100 to 200 ms later687

than in Experiment 2 and Experiment 3, though the timing in688

Experiment 1 is obscured by a pronounced oscillation around689

10 Hz. In sum, the AIC ∆M results observed for the data690

pooled across the experiments appear to be more representative691

of Experiments 2 and 3 than Experiment 1. The pattern of692

article cloze slope lmerERPs was more consistent and all three693

experiments showed a similar, albeit more variable, biphasic694

positive response following the article, similar to that observed695

for the pooled data.696

LMER modeling interval mean amplitude. Whereas the regression 697

ERP analyses described thus far model the moment-by- 698

moment time course of the article cloze effect from 1.5 s 699

before to 1.5 s after the article, experimental EEG studies 700

using event-related designs, including DUK05 and NIET18, 701

often base inferences about event-related brain responses on 702

measurements of scalp potentials aggregated over a specific 703

time interval, e.g., mean amplitude between 200 or 300 and 704

500 ms poststimulus, relative to mean amplitude in a specified 705

pre-stimulus baseline interval, e.g., 100, 200, or 500 ms. To 706

compare the LMER regression ERP results with interval mean 707

amplitude analyses, we reduced the single trial EEG time 708

series data to four sets of summary measures: mean amplitude 709

in two post-stimulus intervals (200–500 ms, 300–500 ms), each 710

measured relative to a baseline of mean amplitude in two inter- 711

vals (100 ms and 500 ms prestimulus). We then modeled these 712

single-trial time-averaged mean amplitude measurements by 713

fitting the KIM (M5, M5r) and KIP (M7, M7r) model pairs at 714

each of the 26 EEG channels separately (c.f., NIET18 LMER 715

analyses of mean potentials aggregated in the interval 200–500 716

ms poststimulus across six centro-parietal scalp locations). 717
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β̂cloze

LMER models of single-trial EEG mean amplitude following the critical article

Fig. 4. Comparison of KIM models M5 and M5r of single-trial mean EEG amplitude
measured in a longer, earlier-starting interval 200 - 500 ms poststimulus (Panel A)
and a shorter, later-starting interval 300 - 500 ms poststimulus (Panel B). The left
column shows the AIC ∆M5r values for the pairwise full (M5) vs. reduced (M5r) KIM
model comparison. ∆M5 for the full model (not shown) were between 0 and 2 as
expected for this comparison. The right column shows the magnitude of the estimated
fixed-effect coefficient for article cloze, β̂cloze, positive values in red, with filled circles
only at locations where the 95% confidence interval for the estimate did not include
0. Like the temporally fine-grained regression ERP models, this single-trial LMER
modeling indicates a positive association between article cloze and potentials over
bilateral posterior scalp around 400 ms postimulus, albeit more robust for the shorter
and later interval 300 - 500 ms poststimulus. Results in this figure are for poststimulus
potentials measured relative to mean amplitude in a 500 ms prestimulus baseline;
results for measurements relative to a 100 ms prestimulus baseline were similar. See
OSF: udck19_pipeline_5.html for these and additional analyses.

Consistent with the lmerERP time-course analysis, mod- 718

eling the potentials averaged across these temporal intervals 719

also found a positive association between article cloze, with 720

a posterior scalp distribution (Figure 4). Across the differ- 721

ent combinations of model random effects, baseline inter- 722

vals, and N400 measurement intervals, only the poststimu- 723

lus measurement interval had much impact on the results 724
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(OSF: udck19_pipeline_5.html). Regardless of the random725

effects or prestimulus baseline interval, the magnitudes of the726

estimated article cloze coefficients for the longer and earlier727

200–500 ms poststimulus interval measurements tend to be728

around 1
3 smaller than for the measurements made 300–500729

ms poststimulus (Figure 4A vs Figure 4B). Attenuated article730

effects in the 200–500 ms post-article interval are consistent731

with the time-course regression ERP modeling which found no732

clear evidence of the article effect before 300 ms poststimulus.733

Lurking variables and spurious lmerERPs. Another general734

issue for the interpretation of an estimated regression model735

coefficient is the spurious effect that can result from a "lurking"736

variable, i.e., a variable that is causally related to the response737

variable and correlated with the predictor but omitted from738

the model (for discussion, see SI Appendix, pp. 6-8). If739

the article cloze lmerERPs in Figure 3 are driven purely by740

correlation with some causal factor unrelated to the form of741

the indefinite article, interpreting them as support for word742

form prediction would be unwarranted. The impact of a743

lurking variable on a regression coefficient can be quantified744

as the omitted variable bias (e.g., 35, pp. 111-112), which745

we used to investigate the impact of a variable known to746

be correlated with article cloze but unrelated to the form of747

the indefinite article∗. Since our normative stimulus testing748

was free response, the proportion of indefinite articles goes749

down as the proportion of non-article responses, (e.g., bare750

plurals, adjectives, definite articles), goes up. The article751

and non-article cloze probabilities are negatively correlated752

(r = −0.264, p < 0.0001, see SI Appendix, fig. S12). We753

modeled the non-article cloze rERP (see SI Appendix, fig. S13),754

and found that despite this correlation, the omitted variable755

bias does not account for the article cloze lmerERP (see SI756

Appendix, fig. S14). Numerous variables are associated with757

article cloze and scalp potentials to some degree. However,758

unless the correlations are strong and the omitted variable759

regression ERPs are large, the bias is small and thus unlikely760

to account for the article cloze effect.761

Discussion762

The project reported herein aims to shed light on the recent763

theoretical controversy about whether the human language764

comprehension mechanism anticipates the phonological form765

of upcoming words. The crucial empirical question is whether766

processing at the prenominal articles, a/an, varies with their767

predictability since, other things equal, the factor responsible768

for the form of the indefinite article is the initial speech sound769

of a not-yet-encountered word. Because of this phonological770

dependency, direct evidence of an effect of predict-ability at771

the article may be reasonably interpreted as indirect evidence772

that, by then, upcoming noun word forms were predict-ed.773

To investigate the time course of the electrical brain activity774

we modeled single-trial EEG recorded before, during, and775

after presentation of pre-nominal indefinite articles (a/an), in776

three experiments that manipulated the predictability (cloze777

probability) of nouns in sentence contexts read by healthy778

younger adults at two words per second in central vision. Our779

interim conclusion was that models that include article cloze780

probability as a continuous predictor do a substantially better781

job accounting for the variability in potentials recorded over782

∗We thank an anonymous reviewer for suggesting this example.

bilateral posterior scalp around 300–500 ms after the onset 783

of the article than do models that omit this variable. Since 784

this was not the case during the 1.5 s prior to the article, we 785

interpreted these results as evidence of a systematic association 786

between article cloze probability and scalp potentials generated 787

by the brain response to the article. The latency, polarity, 788

and scalp distribution of this article cloze effect is generally 789

consistent with the association between cloze probability and 790

scalp potentials (19, 45). 791

Exploratory investigation of alternatives indicated that 792

evidence for the association does not appear to depend on 793

the choice of maximal (KIM) or parsimonious (KIP) random 794

effects, to be driven by the influence of a subset of unrep- 795

resentative data, or to depend on whether the experiment 796

variable is modeled as a fixed or random effect. That said, 797

the article cloze effect appears to be markedly smaller (less 798

variability accounted for, lower amplitude slope lmerERPs) 799

than a corresponding effect at the following word (Figure 2 and 800

Figure 3, immediately after the magenta highlight). In this 801

experimental design (. . . a kite . . . ), article cloze probability is 802

correlated, though not perfectly, with noun cloze probability. 803

The larger ∆Mr and lmerERP effects for the article cloze pre- 804

dictor variable on the following word are likely a consequence 805

of this relationship but cannot be strictly attributed to the 806

contextually supported nouns because in a subset of materials 807

in Experiment 2, a phonologically legal adjective is interposed 808

between the article and noun, an orange kite. Given the high 809

proportion of nouns relative to adjectives in the combined data, 810

it is reasonable to suppose that modeling potentials elicited 811

by the nouns with noun cloze as a predictor variable would 812

find similar, if not larger effects, but testing this speculation 813

is tangential to the present aims and beyond the scope of this 814

report. Although the comparison is imperfect, in all of the 815

models investigated, the magnitude of the transient article 816

cloze rERP response at the article was smaller than at the 817

following word. In this respect the pattern is consistent with 818

other studies that recruit sequential dependency experimental 819

designs to test for prediction in language comprehension and 820

report relatively small and variable ERP effects at the probe 821

word (8, 9, 11–14, 16). 822

LMER modeling the single-trial data for each experiment 823

separately found that article cloze slope lmerERPs for all three 824

experiments showed a biphasic positive response following the 825

article, similar to that observed for the pooled data, albeit more 826

variable. The AIC ∆M patterns for the individual experiment 827

pairwise model comparisons were similar to the pooled data for 828

two of the data sets, Experiment 2 and Experiment 3 to a lesser 829

extent, but not Experiment 1. This is not entirely surprising 830

since there are roughly twice as many single-trial observations 831

in Experiments 2 and 3 as in Experiment 1 (Table 1). It 832

may be that the two-part stimulus presentation procedure 833

and/or the additional materials developed for Experiments 2 834

and 3 afford a better opportunity to observe a small article 835

cloze effect with a single trial LMER analysis than do the 836

procedures and materials used for the DUK05 study. While 837

the regression ERP modeling does not show clear evidence 838

of an article effect for the Experiment 1 data considered on 839

its own, the findings are consisent with the stronger support 840

provided by the replication and extension studies that followed. 841

We also modeled single trial mean amplitude in the post-article 842

intervals 200–500 ms and 300–500 ms with the same KIM and 843
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KIP LMER models used for the time course modeling. The844

choice of KIM vs. KIP model and choice of measurement845

relative to a shorter (100 ms) vs. longer (500 ms) prestimulus846

baseline interval had a negligible impact on the results, but in847

all cases, the magnitude of the article cloze effect was markedly848

smaller for the 200–500 ms poststimulus interval.849

Taken together, this pattern of findings may be relevant to850

understanding the failure to observe an effect of article cloze851

reported in NIET18. That study tested only the smaller set852

of a/an items and single sentence RSVP presentation used for853

the study reported in DUK05 (Experiment 1 in this report),854

whereas we found that the article cloze effects may be more855

readily observed in the followup Experiments 2 and 3 with856

the expanded sets of items and two-part stimulus presentation.857

The LMER analyses reported in NIET18 were conducted on858

single-trial mean amplitudes in the interval 200–500 ms post-859

article, averaged over six centro-parietal electrode locations,860

whereas our time course modeling at each scalp location found861

the article cloze effect to have a more posterior distribution862

and somewhat later onset (Figures 2 and 4). The LMER863

model pairs compared in NIET18 for the likelihood ratio tests864

of the null hypothesis assumed maximal random effects with865

correlated random intercepts and slopes for subjects and items866

whereas we found that in pairwise AIC model comparisons,867

the article cloze effect was at times slightly attenuated for868

the maximal relative to parsimonious model (Figure 2, ∆M5r869

vs. ∆M7r). So although the decisions made in conducting870

and analyzing the study reported in NIET18 are defensible871

for purposes of conducting a direct replication of the DUK05872

study, they may be suboptimal for answering the scientific873

question of interest about word form prediction.874

The failure of the NIET18 report to observe a prenominal875

cloze probability effect in a much larger data sample with gen-876

erally similar design parameters as the DUK05 report raised877

the possibility that there is no such systematic relationship878

between prenominal article cloze and electrical brain activ-879

ity at all. This is the primary research question that our880

project was designed to address, using an exploratory anal-881

ysis approach. To answer this specific question, we selected882

data from experiments similar to both DUK05 and NIET18:883

a/an, designs testing young adults reading at two words per884

second in central vision. This selection affords meaningful885

comparisons among the studies but it also means the results886

do not answer looming secondary questions about how vari-887

ous experimental variables such as presentation rate or age,888

among others, might impact the model fits and morphology889

of article cloze regression ERP waveforms. Still less does the890

analysis answer broader questions about the generalizability891

of the findings in the way a meta-analysis might. Although892

we pooled data across multiple studies, ours is a forensic EEG893

data investigation, not a meta-analysis. And, considered in its894

entirety, the pattern of results from the lmerERP modeling895

we conducted does appear to provide direct evidence of an896

association (quantitative relationship) between prenominal897

article cloze and scalp potentials. Of course, the time course,898

scalp distribution, and polarity of article cloze slope lmerERPs,899

i.e., the estimated β̂cloze coefficients are key to this interpreta-900

tion. And of course, if a model omits (any) relevant predictor901

variables, estimates of the coefficients for variables that are902

included may be biased and, in turn, inferences drawn from the903

model may be wrong; we never know with certainty whether904

a model omits relevant predictors. Interpreting our findings 905

as evidence of a structural relation between the predictability 906

of the stimulus and the brain response it elicits requires the 907

stronger assumption that there are no serious lurking variables. 908

This caveat applies to all regression modeling. All the more 909

reason to systematically explore the data, “look for what can 910

be seen, even if not anticipated.” (48, p. 24). 911

Conclusions 912

In contrast with the large scale null result reported in NIET18, 913

our moderately large scale LMER modeling of single-trial 914

EEG moment-by-moment at 26 scalp locations finds direct 915

empirical support for an association between the predictabil- 916

ity of prenominal indefinite articles and the brain’s response 917

to encountering them in word-by-word reading. This effect 918

may reasonably be attributed to prediction of upcoming word 919

forms in answer to the question of scientific interest. The 920

exploratory modeling reported herein illustrates an approach 921

to experimental EEG data analysis that may prove a useful 922

complement to confirmatory null hypothesis testing. 923

Materials and Methods 924

925

Methods. All normative stimulus testing and EEG studies were con- 926

ducted under human subjects resarch protocols approved by the 927

University of California, San Diego Institutional Review Board. 928

Volunteers were recruited by flyer and through the campus subject 929

pool. Upon their arrival at the lab, the experimental procedures 930

were explained verbally and participants were presented with a 931

printed consent form describing the procedures and potential risks. 932

Individuals who elected to participate in the study provided their 933

written informed consent and received two hours of course credit, 934

cash payment, or a combination, at their discretion. The norma- 935

tive predictability of the critical pre-nominal indefinite articles and 936

nouns was operationally defined as the relative frequency of produc- 937

tion in a sentence fragment completion task (cloze probability) in 938

separate testing with individuals who did not participate in the EEG 939

experiments. Participants in the EEG studies were healthy young 940

adult right-handed native English speakers. Salient differences be- 941

tween the EEG experiments include the number of participants 942

and experimental items (Table 1), the presentation mode (one vs. 943

two sentences per trial), experimental conditions (± prenominal 944

adjectives, ± filler items), counterbalancing scheme, the distribution 945

of cloze probabilities, and normative plausibility of critical nouns 946

(see SI Appendix, Table S1 Synopsis: Experiments 1, 2, and 3). 947

In all three EEG Experiments, sentences containing the critical 948

prenominal articles were read word-by-word at a fixed rate ap- 949

proximately 2 per second and the EEG data acquisition and data 950

processing procedures were the same (see SI Appendix, EEG record- 951

ing and data processing). Prior to modeling, the EEG data were 952

visually screened for artifacts, smoothed (25 Hz low-pass phase 953

compensated FIR), downsampled to 125 samples per second, cen- 954

tered by subtracting the mean of the 1496 ms prestimulus interval 955

for each channel and re-screened for EEG artifacts by computer 956

algorithm (see SI Appendix, EEG Experimental Procedures for 957

details and OSF: udck19_pipeline_1.html for exclusions tabulated 958

by experiment, participant, and item). 959

LMER model fitting. For the data pooled across the three experi- 960

ments, each observation was coded for the experiment, subject, and 961

stimulus item. Each item corresponds to the context prior to the 962

critical article and provides one cloze value for a and one for an 963

(see SI Appendix, fig. S2 for the distributions of article cloze across 964

and within each design). Prior to modeling the EEG, the article 965

cloze predictor variable was scaled from proportions of response 966

(0.0 - 1.0) to standardized units (“z-scores”) by centering and di- 967

viding by the standard deviation. The 1.2e4 screened single-trial 968

EEG epochs were stacked into a dataframe (4.5e6 rows = 1.2e4 969
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epochs × 375 samples / epoch), each row indexed for epoch and970

time stamped relative to article onset, with the experiment, sub-971

ject, item, standardized cloze values, and the 26 EEG channels in972

columns. To model these single-trial data we used fitgrid (49), an973

open-source Python package we developed in the lab that imple-974

ments mixed-effects model fitting via the pymer4 (50) interface to975

the lmerTest (51) and lme4 (39) R packages (52). With fitgrid, we976

swept each LMER model in Table 2 across 3 s epochs of data with977

the critical article in the middle (375 time points, 8 ms intervals978

= 125 samples/second; 26 electrode locations spaced about 5 cm979

apart) and collected the lme4::lmer() profiled maximum likelihood980

fits (REML=FALSE) in a tabular grid. From this grid of model981

fits, we extracted summary measures returned by lmerTest::lmer( )982

for the fit at each time and channel including Akiake Information983

Criterion, β̂j estimates for the intercept and article cloze lmerERPs984

and their 95% Wald confidence intervals, and fitting algorithm985

warnings (49, fitgrid.lmer). The β̂cloze lmerERPs in Figure 3B and986

interval mean amplitude coefficents in Figure 4 for standarized cloze987

may be converted to coefficients B̂cloze on the original cloze scale988

(µV/cloze) as B̂cloze = β̂cloze/SDcloze with the article cloze SD989

values in Table 1.990

Data deposition. Stimulus materials, aggregated behavioral and EEG991

data, summary measures, data analysis software, and reproduction992

recipe are deposited in the Open Science Foundation repository993

OSF: UDCK and licensed under the CreativeCommons Attribution-994

NonCommercial-NoDerivatives 4.0 International License which may995

be viewed here: http://creativecommons.org/licenses/by-nc-nd/4.0.996

Behavioral and EEG data related to an identifiable natural person997

are maintained under control of the P.I. M.K. and Co-Investigators.998

Contact the corresponding author for information about further use999

of the research materials or access to privacy-sensitive data under a1000

written data sharing agreement.1001
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